Angiotensin II-triggered p44/42 mitogen-activated protein kinase mediates sympathetic excitation in heart failure rats.

نویسندگان

  • Shun-Guang Wei
  • Yang Yu
  • Zhi-Hua Zhang
  • Robert M Weiss
  • Robert B Felder
چکیده

Angiotensin II (Ang II), acting via angiotensin type 1 receptors in the brain, activates the sympathetic nervous system in heart failure (HF). We reported recently that Ang II stimulates mitogen-activated protein kinase (MAPK) to upregulate brain angiotensin type 1 receptors in HF rats. In this study we tested the hypothesis that Ang II-activated MAPK signaling pathways contribute to sympathetic excitation in HF. Intracerebroventricular administration of PD98059 and UO126, 2 selective p44/42 MAPK inhibitors, induced significant decreases in mean arterial pressure, heart rate, and renal sympathetic nerve activity in HF rats, but had no effect on these variables in sham-operated rats. Pretreatment with losartan attenuated the effects of PD98059. Intracerebroventricular administration of the p38 MAPK inhibitor SB203580 and the c-Jun N-terminal kinase inhibitor SP600125 had no effect on mean arterial pressure, heart rate, or renal sympathetic nerve activity in HF. The phosphatidylinositol 3-kinase inhibitor LY294002 induced a small decrease in mean arterial pressure and heart rate but no change in renal sympathetic nerve activity. Immunofluorescent staining demonstrated increased p44/42 MAPK activity in neurons of the paraventricular nucleus of the hypothalamus of HF rats, colocalized with Fra-like activity (indicating chronic neuronal excitation). Intracerebroventricular PD98059 and UO126 reduced Fra-like activity in the paraventricular nucleus of the hypothalamus neurons in HF rats. In confirmatory acute studies, intracerebroventricular Ang II increased mean arterial pressure, heart rate, and renal sympathetic nerve activity in baroreceptor-denervated rats and Fra-like immunoreactivity in the paraventricular nucleus of the hypothalamus of neurally intact rats. Central administration of PD98059 markedly reduced these responses. These data demonstrate that intracellular p44/42 MAPK activity contributes to Ang II-induced neuronal excitation in the paraventricular nucleus of the hypothalamus and augmented sympathetic nerve activity in rats with HF.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aldosterone-induced brain MAPK signaling and sympathetic excitation are angiotensin II type-1 receptor dependent.

Angiotensin II (ANG II)-induced mitogen-activated protein kinase (MAPK) signaling upregulates angiotensin II type-1 receptors (AT(1)R) in hypothalamic paraventricular nucleus (PVN) and contributes to AT(1)R-mediated sympathetic excitation in heart failure. Aldosterone has similar effects to increase AT(1)R expression in the PVN and sympathetic drive. The present study was undertaken to determin...

متن کامل

Mitogen-activated protein kinases mediate upregulation of hypothalamic angiotensin II type 1 receptors in heart failure rats.

In heart failure (HF), angiotensin II type 1 receptor (AT(1)-R) expression is upregulated in brain regions regulating sympathetic drive, blood pressure, and body fluid homeostasis. However, the mechanism by which brain AT(1)-R are upregulated in HF remains unknown. The present study examined the hypothesis that the angiotensin II (Ang II)-triggered mitogen-activated protein kinases (MAPKs) p44/...

متن کامل

Central SDF-1/CXCL12 expression and its cardiovascular and sympathetic effects: the role of angiotensin II, TNF-α, and MAP kinase signaling.

The chemokine stromal cell-derived factor-1 (SDF-1/CXCL12) and its receptors are expressed by neurons and glial cells in cardiovascular autonomic regions of the brain, including the hypothalamic paraventricular nucleus (PVN), and contribute to neurohumoral excitation in rats with ischemia-induced heart failure. The present study examined factors regulating the expression of SDF-1 in the PVN and...

متن کامل

Brain angiotensin and heart failure: further evidence for a critical role of mitogen-activated protein kinases.

In both humans and animals, heart failure is associated with sympathoexcitation and increased activity of the renin–angiotensin system.1,2 Studies in animals have shown that in heart failure, there is increased expression of angiotensin type 1 (AT1) receptors in key brain regions regulating sympathetic activity, such as the nucleus of the solitary tract, rostral ventrolateral medulla (RVLM), an...

متن کامل

Inactivation of mitogen-activated protein kinase signaling pathway reduces caspase-14 expression in impaired keratinocytes

Objective(s):Several investigations have revealed that caspase-14 is responsible for the epidermal differentiation and cornification, as well as the regulation of moisturizing effect. However, the precise regulation mechanism is still not clear. This study was aimed to investigate the expression of caspase-14 in filaggrin-deficient normal human epidermal keratinocytes (NHEKs) and to explore the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Hypertension

دوره 52 2  شماره 

صفحات  -

تاریخ انتشار 2008